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Numerical solutions are presented for the natural convection heat transfer from an 
elliptic heat source buried beneath a semi-infinite, saturated, porous medium. The 
surface of the medium is assumed to be permeable. The governing equations for 
Darcy f low are solved using finite differences. The complicated geometry is handled 
through the use of a body-fitted curvilinear coordinate system. Results are pre- 
sented for Ra values ranging from 10 to 200 and ellipse aspect ratio values from 1.0 
(circular cylinder) to 0.167. Two body orientations have been considered. The 
slender orientation yields much higher hear transfer rates (especially at low ellipse 
aspect ratio values) than the blunt orientation. The numerical simulations indicate 
that the boundary-layer approximations cannot be employed for low ellipse aspect 
ratios. In addition, the heat loss does not depend on the burial depth. 

Introduction 
The problem of free convection from a horizontal circular cylin- 
der buried in a saturated: porous medium continues to receive 
much attention because of its fundamental nature as well as the 
many engineering applications. This problem arises in power 
plant steam lines, industrial and agricultural water distribution 
lines, buried electrical cables, oil and gas distribution lines, and 
in the storage of nuclear waste. 

The early studies that considered the problem of buried 
cylinders (pipes) and cables assumed the surrounding medium to 
be purely conductive (see Eckert and Drake 1972; Thiayagarajan 
and Yovanovich 1978; 13au and Sahdal 1982). However, the 
assumption that a pure conduction model can be used to calculate 
the heat losses from a buried pipe may not be valid for high-per- 
meability saturated soils. ]if the surrounding medium is permeable 
to fluid motion, the temperature difference between the pipe and 
the medium gives rise to a natural convection flow. As a result, 
the total heat transfer from the pipe consists of both conduction 
as well as convection. Generally, the contribution of natural 
convection to the heat loss from buried cylinders is as large and, 
in some cases, larger than the contribution of conduction. 

Schrock et al. (19701) and Fernandez and Schrock (1982) 
carried out experiments and numerical calculations for a cylinder 
buried beneath a permeable, horizontal surface. Based on their 
experimental and numerical results, Fernandez and Schrock pre- 
sented a correlation for the Nusselt number that fitted the data 
within a standard deviation of 11.4%. Farouk and Shayer (1988) 
solved the identical problem numerically using a hybrid grid 
system that involved a polar grid mesh near the cylinder and a 
Cartesian mesh for the remainder of the flow domain. However, 
their results were significantly different than the predictions of 
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Fernandez and Schrock, especially at high Ra values. They 
attributed this to the fact that the boundary condition used along 
the permeable surface was different in the two studies. 

Cheng (1984) considered the steady natural convection about 
an isothermal cylinder embedded in an infinite saturated porous 
medium. Approximate closed-form solutions were obtained for 
the local as well as the average Nusselt number by applying 
boundary-layer approximations similar to those applied to the 
classical boundary-layer theory. The applicable boundary-layer 
equations were solved using both the similarity technique as well 
as the Pohlhausen integral method. Although the two solutions 
(in terms of the average Nusselt number) are similar in form, they 
differ on the numerical constants. 

The problem of a cylinder buried beneath a horizontal perme- 
able surface was recently revisited by Facas (1995) who solved 
the full nonlinear governing equations numerically. The compli- 
cated geometry was handled through the use of a body-fitted 
curvilinear coordinate system. The results presented by Facas 
(1995) in terms of the local Nusselt number are in excellent 
agreement with the approximate boundary-layer solution obtained 
by Cheng (1984) and, also, in excellent agreement with the 
experimental results presented in terms of the average Nusselt 
number by Fernandez and Schrock (1982). The work performed 
by Facas (1995) further showed that the heat loss from a buried 
pipe can be reduced significantly through the use of a baffle. 

Bau (1984a) considered the problem of a pipe buried beneath 
a permeable as well as an impermeable, horizontal surface. Both 
the cylinder as well as the medium surface were assumed to be 
maintained at constant temperature. For low Rayleigh numbers, 
an analytical solution was obtained for both permeable and 
impermeable medium surfaces through the use of regular pertur- 
bation expansions. Based on the analytical solution that was 
obtained for the flow and temperature fields, a correlation for the 
Nusselt number was presented for the impermeable case, which is 
valid up to an effective Rayleigh number of 60. It was further 
shown that an optimal burial depth exists for the impermeable 
case for which the heat losses from the pipe are minimized. Facas 
(1994) considered the problem of a hot pipe buried beneath an 
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impermeable surface of a semi-infinite, saturated porous medium 
with two baffles attached on the pipe's surface. Results were 
presented for a range of Rayleigh numbers, burial depths, and 
baffle lengths, respectively. His analysis showed that substantial 
energy savings can be realized if baffles are used. 

Recently, Pop et al. (1992) presented numerical solutions to 
the boundary-layer equations for steady-state free convection 
from cylinders of elliptic cross section embedded in a fluid- 
saturated porous medium. Uniform temperature as well as uni- 
form heat flux boundary conditions were considered at the cylin- 
der surface. Moreover, two body orientations were considered: 
one where the major axis is horizontal (blunt orientation) and the 
other where it is vertical (slender orientation). Numerical results 
were presented for a number of aspect ratios for both the blunt as 
well as the slender orientation. Based on the numerical results 
obtained, Pop et al. concluded that for the uniform wall tempera- 
ture case, the blunt orientation yields higher heat transfer rates; 
whereas, the opposite holds true for the uniform wall heat flux 
case. 

The present study deals with the natural convection over an 
elliptic heat source buried in a semi-infinite, saturated, permeable 
medium, the surface of which is assumed to be horizontal and 
permeable to fluid flow. To the best of the author's knowledge, 
the solution to the full nonlinear equations that govern the free 
convection over a body of elliptic cross section is not available in 
the literature. The geometry and configuration involved in this 
study is depicted schematically in Figure 1. The complicated 
geometry is handled through the use of a body-fitted curvilinear 
coordinate system. The solution to the fluid flow and temperature 
field has been obtained numerically using finite differences. 

M a t h e m a t i c a l  f o r m u l a t i o n  

The problem considered in this study is an elliptic heat source 
buried a distance h beneath a horizontal permeable surface of a 
semi-infinite, saturated, porous medium, as shown in Figure 1. 
Two geometric orientations are considered: (1) the major axis is 
horizontal and perpendicular to the gravity vector (blunt orienta- 
tion); and (2) the major axis is vertical and parallel to the gravity 
vector (slender orientation). For both orientations, the surface of 
the elliptic source is assumed to be maintained at a constant 
temperature T b. 

For low Ra values, the dimensionless governing equations for 
steady, two-dimensional (2-D) natural convection with the 
Boussinesq, Darcy flow and negligible inertia approximations are 
as follows: 

V2dj * = - R a  0x,, (1) 

V20 = ,y,O x, - t ~  Oy,, (2) 

where 

gpopfCf~3fbKAT T -  T o 
R a =  , A T = T  b - T o ;  0 = - -  (3) 

x'~ rb-To 

u' = qJy*, ; v' = - d/x,, 4 '  cfO x' = x Y' y 
h' ' b '  b 

(4) 

and 

k' = as(1 - qb) + hfqb (5) 

The solution of Equations 1 and 2 with appropriate boundary 
conditions gives the desired distribution for ~ * and 0. 

Boundary conditions 

The problem is assumed to be symmetric about the vertical axis 
and, as a result, only half of the flow domain is considered in this 
analysis. Moreover, because it is very difficult to treat an infinite 
domain numerically, the physical domain will be truncated by 
assuming that the two far boundaries at infinite x' and negative 
infinite y'  are at a large distance (w/b) and (d/b) away from 
the center of the ellipse, respectively. Appropriate values for 
(w/b) and (d/b) (lead to solutions that are independent of the 
value set for these two quantities) can be selected only through 
numerical experimentation. 

At the elliptic body surface the following boundary condition 
is used: 0 = 1; O* = O, @ (b/a)2x '2 + y,2 = 1 or x '2 + 
(b/a)Zy '2= 1; whereas, along the symmetry axis, 0 x, = by*' = 
~J*=Ox'=O. 

If the two far fields are set sufficiently far away from the 
source, then the velocity component in the direction parallel to 
each surface can be assumed to be negligible. Thus, the boundary 

Notation 

a 

b 
C 

f 
g 
h 

K 
Nu 
Ra 
T 
x, y 
x', y' 
U p ' U I 

major axis 
minor axis 
specific heat 
ellipse aspect ratio ( f =  b/a) 
gravity vector 
burial depth 
convective heat transfer coefficient 
permeability 
Nusselt number, Equation 12 
Rayleigh number, Equation 3 
temperature 
Cartesian coordinates, Figure 1 
dimensionless Cartesian coordinates, Equation 4 
dimensionless Cartesian velocity components 

Greek 

0 
h 

P 
+ 

volumetric thermal expansion coefficient 
circumferential (angle) coordinate, Figure 1 
dimensionless temperature 
thermal conductivity 
kinematic viscosity 
density 
porosity 
stream function 
dimensionless stream function 
body-fitted coordinates 

Subscripts 

b heat source surface 
f fluid 
s solid 
o reference state 

520 Int. J. Heat and Fluid Flow, Vol. 16, No. 6, December 1995 



i 

Y 

¢ 

(0) 

Y 

(b~ 

Figure 1 Geometry and configuration: (a) blunt; (b) slender 

condition for the stream function at the bottom surface 
( y ' = - d / b )  becomes ~y, = 0  and at the far right surface 
(x '  = w/a)~J~, = O. 

Zero gradient temperature boundary conditions were consid- 
ered at these two far surfaces: 0y, = 0 at y' = - d /b ,  and 0 x, = 0 
at x' = w / b .  The least restrictive condition that can be imposed 
along the top permeable surface is that of a constant pressure. A 
constant pressure condition would exist if either a standing liquid 
or a second porous medium (with a larger permeability) overlies 
the porous layer of interest. Thus, for the case of a constant 
pressure, a balance of momentum in the x-direction yields at the 
top permeable surface u' = ~y* = 0. 

Specifying the thermal boundary condition along the top 
permeable surface is not as straightforward. For the limiting case 
of a circular cylinder buried beneath a permeable surface, a 
number of different temperature boundary conditions have been 
imposed by the various investigators that have considered this 
problem to date. Fernandez and Schrock (1982) used a condition 
similar to that used in transpiration cooling that accounts for the 
convective flow of energy through the surface as well as conduc- 
tion to the surface and convection to the overlaying water. Bau 
(1984a) assumed a constant temperature condition. The assump- 
tion of a constant temperature may be, however, difficult to 
physically realize especially at high Rayleigh numbers. Facas 
(1995) imposed a zero temperature gradient condition that im- 
plies that the heat transfer through the permeable surface to the 
overlying liquid layer is primarily by convection. The results 
presented by Facas for a circular cylinder buried beneath a 
permeable surface are in very good agreement (within 10%) with 
the experimental and numerical results presented for the same 
geometry by Fernandez and Schrock and in excellent agreement 
with the analytical results presented for a cylinder buried in an 
infinite porous medium lay Cheng (1984). It is important to note 
here that the results (obtained with the correlation) presented by 
Fernandez and Schrock are always larger by about 10% than the 
results given by Facas (1995). However, based on the few 
experimental data that were presented for a cylinder of large 
aspect ratio (actual experimental data are shown for L / D =  76.7), 
it appears that the correlation given by Fernandez and Schrock 
overestimates the heat transfer for the Rayleigh range considered 
by Facas (1995) (see Figure 5 of Fernandez and Schrock). When 
this observation is taken into consideration, it is clear that the 
agreement between the numerical data presented by Facas (1995) 
and the experimental results of Fernandez and Schrock is excel- 
lent. Consequently, it is argued here that a zero temperature 
gradient condition can be specified along the entire top perme- 
able surface without affecting the ability to accurately predict the 
heat transfer from the ,;ource. Thus, the temperature boundary 
condition at the top perraeable surface was set to 0y, = 0. 

Natural convection buried heat source: G. N. Facas 

Boundary-fitted coordinates 

As previously noted, a truncated rectangular domain is used to 
approximate the flow domain. A Cartesian grid could, in princi- 
ple, be adopted with the present problem, as it is often done with 
conduction problems. However, in order to obtain accurate solu- 
tions with problems that involve convection, it is advantageous to 
have all rigid surfaces coincide with a surface on which one of 
the coordinates is constant. Following Facas (1994), a new 
body-fitted curvilinear coordinate system is introduced such that 
the various surfaces coincide with constant values of ~ and "q, as 
shown in Figure 2. From the various techniques available, the 
partial differential equation (PDE) method presented by Thomp- 
son et al. (1982) is chosen. Briefly, the transformation relations 
for the mapping are obtained by solving the following nonlinear 
system of partial differential equations (from this point on the 
nondimensional spatial coordinates x' and y' are referred to as 
simply x and y; i.e., the primes are dropped): 

O~lX{{ --  2 a 2 x ~  + a3xnn + J2(px~ + Qxn) = 0 (6) 

otly~ _ 2ot2y~n + ot3ynn + j 2 (  p y ~  ..{_ QYn) = 0 ( 7 )  

where 

__ 2 2 Otl--Xn"l-y. q, Otz =X~Xn + y t y  n, Ot3 =Xg"l-y ~ 

J = x~yn - xny~ (8) 

and P and Q are functions of ~ and 11. Their function is to 
control the spacing between adjacent ~ and ~1 grid lines, respec- 
tively. In this study, P and Q were set to 

P = 0  

Q = -Zl{sgn(~] - 'ql) exp[ -z2("  q - -  q q l ) ]  

+ sgn(-q - "q2) cxp[ -z2 (n2  - "q)]} (9) 

w h e r e  z I and z a are constants. 
The solution to Equations 6 and 7 was obtained iteratively 

using central differences. An example of the resulting grid is 
shown in the physical plane in Figure 2. The computational plane 
consists of the rectangle ~1 -< ~ -< 62  and "1]1 ~ I] ~ "112. 

11= 

61 

Figure 2 An example of the body-fitted curvilinear coord i -  
na tes  ( f =  0 .5 ,  h / b  = 8,  w / b  = d / b  = 38)  
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When the governing Equations 1 and 2 and corresponding 
boundary conditions are also transformed into the new coordinate 
system (6, "q) the resulting equations become: 

a , , .  ~ _ 2Otzt~ • n + Oi. 3~/;r I + j2 (eq~*  + Q ¢ ;  ) 

= - RaJ( y,qO~ - y~On) (10) 

(Xl0¢f - 2ot20f~ + ot30nn + J 2 ( p 0 ~  + Q0n) 

= S ( q ~  0~ - t~* 0 n )  ( 1 1 )  

and the corresponding boundary conditions become as follows: 
Heat source surface: 

0 = 1,  ~ *  = 0 at 61 - 6 - -  6 2 ;  ~ = '1]1 (12a) 

Top permeable surface: 

xn~J ~-x¢~=xnOt~-x~O n=O at 61 < 6 < 6 2 ;  

Symmetry axis: 

* = O~ = 0 at 6 = 61 ; 311 - -  TI -~< '112 

0 * = O~ = 0 at 6 = 62 ; 311 -~< 3] -- "q2 

Far-right surface: 

ynt~-y~O~=ynO~-y~On=O at 6 ~ < 6 < 6 b ;  

= ~ 2  

( lZb)  

(12c) 

= ~ 2  

(12d) 

Far-bottom surface: 

xnt~* - x(~.q = x.q0~ - x~0 n = 0 at 6b < 6 < 62, "q = "q2 

(12e) 

The solution of Equations 10 and 11 subject to the conditions 
specified by Equation 12 yields the desired distribution for ~ * 
and 0. 

H e a t  t r a n s f e r  

The local Nusselt number along the source surface is defined as 
follows: 

hb (°°/- (13) Nn 
)t t \ On /x2+(b/a) y =lor(b/a)2x2+y2=l 

where n represents the direction normal to the heat source 
surface. Because the heat source surface in the computational 
domain is represented by a constant "q-line, the directional deriva- 

tive shown in Equation 13 expressed in terms of ~ and "q 
becomes, Thompson et al. (1979) 

- -  - - I X  2 - -  Nu(6,  "ql) = - 0¢'3"~'-~ 

Xl=~% 

,14, 
J O'q n=n, 

The average Nusselt number, N-fi at the elliptic heat source 
surface is given by 

1 
f~2Nu(~, "ql) d6 (15) N-fi ~ 2 - 6 1  ~, 

N u m e r i c a l  s o l u t i o n  

The solution to Equations 10 and 11 subject to the boundary 
conditions specified by Equation 12 is obtained numerically 
using finite differences. Central differences are used to approxi- 
mate the diffusive terms; whereas, the upwind differencing 
scheme was introduced with the convective terms (Roache 1976). 
The resulting algebraic equations were solved iteratively using 
the method of overrelaxation (S.O.R.). The iterative procedure 
was terminated when the following relative convergence criterion 
was satisfied at every grid point. 

where the superscript n denotes the iteration performed. 
To ensure that the numerical code is validated, the convection 

problem within two concentric, horizontal cylinders for which 
solutions are available was solved. The results obtained using the 
present code are in good agreement with those of Caltagirone 
(1976), Facas and Farouk (1983), Bau (1984b), and Rao et al. 
(1987); see Facas (1995) for further details. To validate further 
the numerical model, the solutions obtained with the present 
model for a circular cylinder buried beneath a permeable surface 
were compared (in terms of the average Nusselt number) with the 
experimental and numerical results presented for the same prob- 
lem by Fernandez and Schrock (1982); see Facas (1995) for 
further details. Furthermore, the local as well as the average 
Nusselt number distribution predicted with the present model for 
a circular cylinder was also compared to the analytical results 
presented for a cylinder buried in a infinite porous medium by 
Cheng (1984), see Figure 7. 

The numerical results for the problem under consideration 
will, in general, be sensitive to the values set for (w/b) and 

Table 1 Effect of grid size on the accuracy of the solution (h /b  = 8, f =  1, w/b = d /b  = 38) 

Grid Size (~, -q) * 

Ra 60 × 60 60 × 90 60 × 120 Cheng (1984) Fernandez and Schrock (1982) 

NU 2.974 3.031 3.057 2.828 3.200 
50 

~ m  a x - -  28.28 - 28.11 - 28.03 

NO 4.165 4.226 4.255 4.000 4.569 
100 

qJmax - 42.95 - 42.52 - 42.32 

* The t w o  cons tan ts  z~ and  z 2 in Equa t ion  9 are same for all three grid sizes 
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Figure 3 Uniformly spaced streamlines (left-hand side) and 
isotherms (right-hand side) corresponding to the blunt orienta- 
t ion for f =  0.5, h/b = 5, Ra = 100 (A~* = 3.62, A0 = 0.1) 

(d/b). As a result, a considerable effort has been directed to 
select values for (w/b) and (d/b) so that the solution is indepen- 
dent of the value selected for these two quantities. Based on the 
results presented by Facas (1995), the minimum value considered 
in this analysis for (w/b) and (d/b) was about 38 and, in some 
cases, values as large as 57 were used [see Facas (1995) for 
further details on the effect of w/b and d/b on the solution). 

A considerable effort in this study was also directed toward 
determining the minimum number of grid points required to 
obtain solutions that are grid independent. For (h/b) < 8, a grid 
size of 60 × 90 was found to yield solutions that are reasonably 
grid independent and in very good agreement with the experi- 
mental and numerical results presented for a pipe buried beneath 
a permeable surface by Fernandez and Schrock (1982) and Cheng 
(1984); see Table 1. 

Three-point finite differences were used to evaluate the local 
Nusselt number. The average Nusselt number was evaluated 
using Simpson's rule. All computations were carried out on a 486 
personal computer. 

R e s u l t s  a n d  d i s c u s s i o n  

Numerical solutions haw ~. been obtained for the blunt as well as 
the slender orientation for Rayleigh numbers (based on the minor 

Figure 4 Uniformly spaced streamlines (left-hand side) and 
isotherms (right-hand side) corresponding to the slender orien- 
tat ion for f =  0.5, h /b=  5, Ra = 100 (A~* =3.91, A0=  0.1) 

Natural convection buried heat source: G. N. Facas 
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Figure 5 Local Nusselt number distr ibut ions corresponding to 
the blunt orientation, h/b = 8 and Ra = 100 

axis) in the range of 10 to 200; burial depths (h/b) varying from 
4 to 8; and ellipse aspect ratios ( f =  b/a) ranging from 0.167 to 
1.0 (circular cylinder). 

The flow and temperature field associated with an elliptic heat 
source buried at a depth h/b = 5, aspect ratio f =  0.5, and 
Ra = 100 is depicted in Figures 3 and 4 for the blunt and slender 
orientation respectively. As it is illustrated in Figures 3 and 4, the 
fluid flow is basically upward; the fluid adjacent to the source 
becomes hotter, and it begins to rise until it reaches the top 
permeable surface through which it is finally discharged to the 
surroundings. The isotherm patterns indicate a maximum temper- 
ature gradient near ~ = 90 ° for the blunt orientation and " /= 0 ° 
for the slender orientation, respectively. The streamline plots 
show that the fluid is accelerating from a low-velocity point 
below the ellipse to a high-velocity region above the ellipse. 
Clearly, at Ra = 100, the streamline and isotherm plots indicate 
the existence of a thin thermal boundary layer. Also, some 
refilling seems to occur through the upper permeable surface. It is 
important to note that the physical domain shown in Figures 3 
and 4 represents only a small portion (region near the heat source 
bounded by the dashed line in Figure 2) of the domain that was 

18 t ' I '__ _l 

Pop ctal. Present 

3 

0 
0 60 120 180 

Angle, 7 

Figure 6 Local Nusselt number  distributions corresponding to 
the slender orientation, h/b = 8 and Ra = 100 
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considered in the analysis in order to be able to show details near 
the source. 

In Figures 5 and 6 the solutions obtained in terms of the local 
Nusselt number are compared to the numerical solutions obtained 
(converted to the notation used by this author) from the corre- 
sponding boundary-layer equations to this problem by Pop et al. 
(1992). Clearly, for ellipse aspect ratios ( f =  b/a) in the range of 
0.75 to 1.0, the solutions presented by the two studies are in good 
agreement for both the blunt as well as the slender orientation. 
However, as the ellipse aspect ratio decreases to 0.5, the bound- 
ary-layer solution corresponding to the slender orientation 
"breaks" the trend that was established at the slightly higher 
aspect ratios and yields much larger Nusselt number values. It is 
important to note here that the heat transfer for the problem under 
consideration is a very weak function of burial depth, as it shown 
later. As a result, the comparison with the results presented by 
Pop et al. is valid, although their results correspond to a cylinder 
buried in an infinite domain. The value obtained for the average 
Nusselt number from the boundary-layer solution increases even 
more with decreasing ellipse aspect ratio values, as it is evident 
from the solution corresponding to f =  0.25. It is interesting to 
observe that for the blunt orientation, the boundary-layer solu- 
tions show no dependence (in terms of the local Nusselt number) 
on the aspect ratio for the lower part of the ellipse once the 
aspect ratio value is less than 0.5. It is also interesting to note that 
the boundary-layer solution corresponding to the blunt orientation 
and f =  0.25 indicates that the local Nusselt number reaches a 
maximum near ",/= 90 °, proceeds to achieve a minimum along 
the top portion of the ellipse, at which point it reverses direction 
and begins to increase once again. Clearly, these findings are not 
confirmed by the solutions obtained in this study. 

Because large discrepancies exist at low ellipse aspect ratios 
between the solutions obtained in this study and the boundary- 
layer solutions presented by Pop et al. (1992) for the slender 
orientation, two limiting cases have been considered in order to 
validate the present model. The first case corresponds to a 
circular cylinder ( f =  1.0); whereas, the second corresponds to 
that of a vertical heated plate. For both of these limiting cases, 
Cheng (1984) presented similarity solutions. As the aspect ratio 
decreases, the local Nusselt number distribution for a slender 
ellipse should, in the limit, approach the local Nusselt number 

distribution for a heated vertical wall. For a heated vertical wall, 
the local Nusselt number distribution is given by Cheng (1984) as 
follows: 

Nu x=0 . 444  R V ~  ~, x > 0  (16) 

where x here is measured from the leading point of the vertical 
plate. Thus, an approximation for the local Nusselt number 
distribution corresponding to the slender case can be written in 
terms of Ra (defined in terms of b) as follows: 

Nu(~,) = ~ = 0 . 4 4 4 ~ ,  ~ > 0 (17) 

where ~ represents the arc length (as shown in Figure 1), and its 
value is obtained from the elliptic integral: 

a 2 _ b 2 
~ = a f 0  ~ / ( 1 - e  2 sin 2q~) dq~; e 2 a2 (18) 

14 i 

• f-1 0 IC~mg, 19114] 

f-l.0 
f-O.8 
f-0.5 
f-O.2S 
f~.167 

q vert-pt~te [~1. ( ]~} 

I 

12 

Z 

Z 

2 

0 
60 120 180 

Angle, 3' 

Figure 7 Local Nusselt number distributions corresponding to 
the slender orientation, h/b = 8 and Ra = 100 

Table 2 Average Nusselt number as a function of Ra, ellipse aspect ratio f, and body orientation; h / b  = 8 

Ra f =  b/a Blunt orientation Slender orientation 

10 1.0 1.300 1.300 
0.8 1.219 1.227 
0.667 1.115 1.211 
0.5 1.058 1.098 

50 1.0 3.031 3.031 
0.8 2.826 2.913 
0.667 2.643 2.792 
0.5 2.345 2.615 

1 O0 1.0 4.226 4.226 
0.8 3.953 4.049 
0.75 3.794 4.001 
0.667 3.621 3.911 
O. 5 3.221 3.687 
0.25 2.347 3.146 
O. 167 - 2.825 

150 1.0 5.127 5.127 
0.8 4.774 5.009 
0.5 3.859 4.530 

200 1.0 5.879 5.879 
0.8 5.470 5.762 
0.5 4.399 5.220 
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Figure 7 shows the local Nusselt number distribution pre- 
dicted by Equation 17 (with f = b / a  = 0.167 and Ra = 100), the 
similarity solution presented by Cheng (1984) for the case of a 
circular cylinder, and the solutions that were obtained in this 
study for a number of el][ipse aspect ratio values. As can be seen, 
the solution corresponding to f =  0.167 is approaching the ap- 
proximate solution given by Equation 17, thus validating the 
predictions of this study. Based on this, it is argued that the 
numerical solutions to the boundary-layer equations presented for 
the problem under consideration by Pop et al. (1992) are not 
valid for ellipse aspect ratios less than 0.5 for the blunt orienta- 
tion and 0.75 for the slender orientation. 

Average Nusselt number results as a function of burial depth 
( h / b )  are shown in Figure 8 for Ra = 100 and f =  0.5 for both 
the blunt as well as the slender orientation. Clearly, from Figure 
8 it can be seen that the heat transfer for both the blunt as well as 
the slender orientation is a very weak function of the burial 
depth. Although not shown here, similar conclusions about the 
dependence of the heat transfer on burial depth were drawn for 
all Ra and f values considered in this study. It is important to 
note here that this finding is consistent with the experimental 
findings of Fernandez and Schrock (1982) for a buried cylinder. 
Average Nusselt number values associated with an elliptic heat 
source buried beneath a permeable surface a distance h / b  = 8 
are tabulated in Table 2 for a number of Ra and f values for both 
the blunt as well as the slender orientation. The results indicate 
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that the slender orientation yields much higher overall heat 
transfer rates (especially at low f values) than the blunt orienta- 
tion, which is the opposite of the conclusion drawn by Pop et al. 
(1992). 

Finally, in Figure 9 the average Nusselt number corresponding 
to Ra = 100 and h / b  = 8 is plotted as a function of ellipse aspect 
ratio f. Also plotted in this figure is the average Nusselt number 
associated with a circular cylinder with the same surface area as 
the corresponding ellipses. Clearly, the slender orientation yields 
always higher heat transfer rates than a cylinder; whereas, the 
heat transfer rate corresponding to the blunt case is slightly lower 
than that from a cylinder. 

Conclusion 

A numerical investigation has been performed to solve for the 
flow and temperature fields for a heat source with an elliptic 
cross section buried in a saturated porous medium the surface of 
which is assumed to be permeable to fluid flow. Results are 
presented for a range of Rayleigh numbers, ellipse aspect ratios, 
burial depths, and two body orientations. For high-aspect ratio 
values, the present results in terms of the local and average 
Nusselt number are in good agreement with the solution to the 
boundary-layer equations available in the literature. Based on the 
numerical solutions presented by Pop et al. (1992), the 
boundary-layer assumptions do not yield valid solutions for low 
ellipse aspect ratio values. Moreover, it has been shown that the 
heat transfer from the elliptic source does not really depend on 
burial depth. In addition, the slender orientation yields much 
higher heat transfer rates than the blunt orientation. 
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